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Abstract
We define and study the properties of channels which are analogous to unital
qubit channels in several ways. A full treatment can be given only when the
dimension d = pm a prime power, in which case each of the d + 1 mutually
unbiased bases (MUB) defines an axis. Along each axis the channel looks
like a depolarizing channel, but the degree of depolarization depends on the
axis. When d is not a prime power, some of our results still hold, particularly
in the case of channels with one symmetry axis. We describe the convex
structure of this class of channels and the subclass of entanglement breaking
channels. We find new bound entangled states for d = 3. For these channels,
we show that the multiplicativity conjecture for maximal output p-norm holds
for p = 2. We also find channels with behaviour not exhibited by unital qubit
channels, including two pairs of orthogonal bases with equal output entropy
in the absence of symmetry. This provides new numerical evidence for the
additivity of minimal output entropy.

PACS numbers: 03.67.−a, 03.67.Mn

1. Introduction

The results presented here are motivated by the desire to find channels for dimension d > 2
whose properties are similar to those of the unital qubit channels, particularly with respect
to optimal output purity. A channel is described by a completely positive, trace-preserving
(CPT) map. The channels we construct are similar to unital qubit channels in the sense that
their effect on a density matrix can be defined in terms of multipliers of components along
different ‘axes’ defined in terms of mutually unbiased bases (MUB). When all multipliers are
positive, these channels are very much like unital qubit channels with positive multipliers.
However, when some of the multipliers are negative the new channels can exhibit behaviour
not encountered for unital qubit channels.

1751-8113/07/288171+34$30.00 © 2007 IOP Publishing Ltd Printed in the UK 8171
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For a fixed orthonormal basis B = {|ψk〉}, the quantum-classical (QC) channel

�QC(ρ) =
∑

k

〈ψk, ρψk〉|ψk〉〈ψk| (1)

projects a density matrix ρ onto the corresponding diagonal matrix in this basis. A convex
combination

∑
J tJ �

QC
J (ρ) of QC channels in a collection of orthonormal bases BJ = {∣∣ψJ

k

〉}
is also a channel; in fact, it is an entanglement breaking (EB) channel. We consider channels
which are a linear combination of the identity map I(ρ) = ρ and a convex combination of
QC channels whose bases are mutually unbiased, i.e., satisfy

∣∣〈ψJ
m,ψK

n

〉∣∣2 =
⎧⎨⎩

1

d
for J �= K

δmn for J = K.

(2)

Such channels can be written in the form

� = sI +
∑
L

tL�
QC
L (3)

with

s +
∑
L

tL = 1 and tL � 0, s � −1

d − 1
. (4)

The first condition ensures that � is trace preserving (TP), and the pair that it is completely
positive (CP), as will be shown in section 2.

It is well known that Cd can have at most d + 1 MUB and that this is always possible
when d = pm is a prime power. We are primarily interested in channels of the form (3) when
such a full set of d + 1 MUB exist. In that case, it is natural to generalize the Bloch sphere
representation so that a density matrix ρ is represented by a vector vJj as in (8) and regard
each of the MUB as defining an ‘axis’. The effect of the channel (3) on a density matrix is to
take vJj �→ (s + tJ )vJj , i.e., to multiply each vJj by the number λJ = s + tJ . Since this action
depends only on the axis label J , we call these channels ‘constant on axes’.

In section 2, we introduce the relevant notation and describe several equivalent ways
of representing channels constant on axes. We also describe important subclasses of these
channels in section 2.3 and discuss their structure as a convex set in section 2.4. More details
about our approach to MUB and relevant ways of representing states and channels are given
in appendix A.

In section 3, we study the entanglement-breaking (EB) subclass, emphasizing conditions
on the multipliers. We also give some conditions under which the channels define bound
entangled states when d = 3.

In section 4, we study channels which are linear combinations of the depolarizing channel,
the projection onto the diagonal of a matrix and the completely noisy channel. These channels
have one symmetry axis. They do not require MUB for their definition; however, when one
has a full set of MUB they can be rewritten as channels constant on axes. We give necessary
and sufficient conditions for the channels to be EB and consider their optimal output purity.

In section 5, we consider the maximal output purity of channels constant on axes,
particularly the additivity conjecture for minimal entropy and the multiplicativity of the
maximal p-norm. We show that for those with some negative multipliers, the optimal output
purity needs not occur on the ‘longest’ axis. Indeed, one can even have two axes with different
multipliers for which the corresponding MUB have equal output entropy. Numerical study of
such channels gives new evidence for additivity of the minimal output entropy. In section 5.3,
we conjecture that channels with non-negative multipliers achieve their maximal output purity
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on axis states and explore the connection to multiplicativity. In section 5.4, we show that
multiplicativity holds for p = 2 for all channels constant on axes and extend this to channels
constant on the ‘longest’ axis.

The paper contains a number of appendices, the first of which is primarily expository.
The first two sections of appendix A describe representations of states and channels from the
perspective that the d×d matrices form a Hilbert space with the inner product 〈A,B〉 = TrA†B.
Appendix A.3 discusses expansions in generalized Pauli matrices and their connection to MUB.
Appendix A.4 gives more information about MUB; appendix A.5 considers some alternative
ways of using MUB to describe channels, and appendix A.6 considers channels which are
formed from conjugations on a single axis. Finally, a simple proof of the so-called computable
cross norm (CCN) condition is given in appendix A.7.

The remaining appendices contain details of proofs which are omitted in the main text.
Appendix B contains several proofs related to the multiplicativity conjecture. Appendix C.1
proves separability of certain state representatives which determine the EB region for channels
with one symmetry axis. Appendix C.2 describes the state representative when d is prime.
Appendices C.3 and C.4 use this result to obtain extreme points of the EB region for prime d
as well as the PPT region for the case d = 3.

2. Channels constant on axes

2.1. Notation and generators of MUB

For any collection BJ = {∣∣ψJ
k

〉}
of orthonormal bases on Cd , we can define the operators

WJ =
d∑

k=1

ωk
∣∣ψJ

k

〉〈
ψJ

k

∣∣, J = 1, 2, . . . , d + 1, (5)

where ω = e2π i/d . It follows that∣∣ψJ
n

〉〈
ψJ

n

∣∣ = 1

d

d−1∑
j=0

ωnjW
j

J = .
1

d

⎡⎣I +
d−1∑
j=1

ωnjW
j

J

⎤⎦ . (6)

By construction, Tr Wm
J = 0 for m = 1, 2, . . . , d − 1,Wm

J is unitary for any integer

m,
(
Wm

J

)† = W−m
J = Wd−m

J , and each of the operators WJ generates a cyclic group of
order d. If, in addition, the bases are mutually unbiased (2) then when J �= K and m and n
are not both zero

Tr
(
Wm

J

)†
Wn

K =
∑
jk

ωjm−kn
∣∣〈ψJ

j , ψK
k

〉∣∣2 = 1

d

d∑
j=1

ωjm

d∑
k=1

ωkn = 0. (7)

When there are d +1 MUB, this gives d2 −1 unitary operators
{
Wm

J

}
m=1,...,d−1,J=1,...,d+1 which

satisfy the orthogonality condition Tr Wd−m
J Wn

K = dδJKδmn and, hence, form an orthogonal
basis for the subspace of trace zero matrices in Md . Note that this immediately implies that
d + 1 is the maximum number of MUB for Cd .

We call the unitary operators WJ the generators of the MUB. When we have a full set
of d + 1 MUB, adding the identity matrix I to

{
Wm

J

}
gives an orthogonal basis of unitaries

(OBU) for Md with norm d1/2. Therefore, any density matrix ρ can be written as

ρ = 1

d

⎡⎣I +
d+1∑
J=1

d−1∑
j=1

vJjW
j

J

⎤⎦ , (8)
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with vJj = Tr W
−j

J ρ. This is the standard expansion of a vector in a Hilbert space using an
orthogonal basis; the only novelty is that our Hilbert space is the set of d ×d matrices Md with
the Hilbert–Schmidt inner product 〈A,B〉 = Tr A†B. Equation (8) can also be considered a
generalization of the Bloch sphere representation. Both viewpoints are considered in more
detail in appendix A. It is straightforward to show that

�
QC
K (ρ) = 1

d

d−1∑
j=0

W
j

KρW
−j

K = 1

d

⎡⎣I +
d−1∑
j=1

vKjW
j

K

⎤⎦ . (9)

This says that the effect of �
QC
K (ρ) is simply to multiply vJj by 1 for J = K and by 0 for

J �= K . Since (9) has the Kraus operator sum form, the Kraus operators for a QC channel
corresponding to the basis BJ can be chosen as 1√

d
W

j

J , j = 1, 2, . . . , d .

2.2. Equivalent representations

Given a set of MUB, a channel constant on axes can be defined in terms of the corresponding
QC channels by (3) with constraints (4). The results of the previous section allow us to give
some equivalent ways of writing channels constant on axes. First, observe that a map of the
form (3) can be written as

�(ρ) = a00ρ +
1

d − 1

d+1∑
J=1

d−1∑
j=1

aJ W
j

J ρW
−j

J , (10)

with a00 = s + 1
d

∑
J tJ = 1

d
[(d − 1)s + 1] and aJ = d−1

d
tJ . In this form, the TP condition

in (4) becomes a00 +
∑

J aJ = 1, and the next pair of conditions are equivalent to a00 � 0
and aJ � 0 for all J . Then (10) has the operator sum form of a CP map with Kraus operators√

a00I and
√

aJ /(d − 1)W
j

J . Thus, conditions (4) suffice for � to be CPT. It follows from
theorem 18 in appendix A.2 that the converse is also true, i.e., a map of the form (10) is not
CP unless a00 � and aJ � 0 for all J .

It follows from the comment after (9) that the effect of a map of the form (3) can be
expressed as

� :
1

d

⎡⎣I +
d+1∑
J=1

d−1∑
j=1

vJjW
j

J

⎤⎦ �−→ 1

d

⎡⎣I +
d+1∑
J=1

λJ

d−1∑
j=1

vJjW
j

J

⎤⎦ , (11)

so that vJj �→ λJ vJj with λJ := s + tJ . Thus, every such channel corresponds to a unique
vector in Rd+1 which we write as [λ1, λ2, . . . λd+1] with λJ = s + tJ . When all of the λJ are
equal, the channel is depolarizing. Thus, another view of a channel constant on axes is that an
input on the J th axis has the same output as a depolarizing channel with λ = λJ in (14). This
follows immediately from (11) and the fact that γ = ∑

n µn

∣∣ψJ
n

〉〈
ψJ

n

∣∣ has vLj = 0 for L �= J .

Theorem 1. Let Cd have a full set of d + 1 MUB and let [λ1, λ2, . . . , λd+1] be a vector in Rd+1.
Then (11) defines a CPT map if and only if

− 1

d − 1
�
∑

J

λJ � 1 + d min
K

λK. (12)

Proof. If one uses the TP condition in (4) to eliminate s, the two CP inequalities are equivalent
to ∑

J �=K

λJ � 1 + (d − 1)λK K = 1, 2, . . . , d + 1 (13a)
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Table 1. Comparison of axis channels classes to unital qubit classes.

Description Qubit d > 2

Identity I [1, 1, 1] I [1, 1, . . . , 1]
Max noise N [0, 0, 0] N [0, 0, . . . , 0]

(a) QC QC [1, 0, 0] �
QC
L [1, 0, . . . 0]

(b) Phase damping [1, λ, λ] �PD
L,λ [1, λ, . . . λ]

(c) Extreme points σLρσL [1,−1,−1] �X
L

[
1, −1

d−1 , . . . , −1
d−1

]
(d) Extreme EB σjQCσj [−1, 0, 0] �XEB

L

[
−1
d−1 , 0, . . . 0

]
Extreme EB for d > 2

[
− 1

3 , 1
3 , 1

3

]
�YEB

L

[
d−2

2(d−1)
, −1

2(d−1)
, . . . −1

2(d−1)

]
(e) Depolarize from I �

dep
λ [λ, λ, λ] �

dep
λ [λ, λ, . . . λ]

(f) Max squashed two-Pauli [2λ − 1, λ, λ] �
MxSq
L,λ

[
dλ−1
d−1 , λ, . . . λ

]
(g) Depolarize from �X

L [λ, −λ, −λ]
[
λ, −λ

d−1 , . . . , −λ
d−1

]
∑

J

λJ � − 1

d − 1
, (13b)

which is clearly equivalent to (12). �

2.3. Subclasses

We now describe some important subclasses of channels constant on axes, in each case
identifying its multipliers λJ (as in (11)) and its coefficients aLj (as in (10)). This information
is summarized in table 1.

(a) QC channels. Let �
QC
L have the form (9). Then its multiplier is [0, . . . , 1, . . . , 0] and

a00 = aL = 1
d

and aKj = 0 for K �= L.

(b) Phase damping channels. Let �PD
L,λ = λI + (1 − λ)�

QC
L with − 1

d−1 � λ � 1. Then �PD
L,λ

has a multiplier of the form [λ, . . . λ, 1, λ, . . . , λ] and a00 = λ + 1−λ
d

, aLj = 1−λ
d

, and
aKj = 0 for K �= L. The d-axis states which are eigenvectors of WL are invariant and
thus have pure outputs.

(c) Extreme phase damping channels. Let �X
L = �PD

L,λ with λ = −1
d−1 so that a00 = 0 and

aKj = −1
d−1δKL. Since no axis channel (except I) can have fewer non-zero aKj , these

channels are extreme points of the convex set of axis channels. Each �X
L has a multiplier

of the form
[ −1

d−1 , . . . , −1
d−1 , 1, −1

d−1 , . . . , −1
d−1

]
with 1 in the Lth position. When d = 2, each

�X
L is a conjugation with one of the Pauli matrices σL, and its multiplier is a permutation

of [−1, 1,−1].
(d) Extreme EB channels. The channels �XEB

L ≡ −1
d−1�

QC
L + 1

d−1N = 1
d

∑
J �=L �X

J

have multiplier
[
0, . . . 0,− 1

d−1 , 0 . . . 0
]

and are extreme points of the set of EB
channels. The channels we denote by �YEB

L have multipliers which are permutations
of

[
d−2

2(d−1)
, −1

2(d−1)
, . . . −1

2(d−1)

]
; for d > 2, these are also extreme points of the set of EB

channels, as will be shown in section 3.
(e) Depolarizing channels. The channel �dep

λ (ρ) = λρ+(1−λ) 1
d

I has multiplier [λ, λ, . . . , λ]
and can be written as

�
dep
λ = λI + (1 − λ)N =

d+1∑
L=1

1

d + 1
�PD

L,ζ , (14)

with ζ = λ(d+1)−1
d

. Then a00 = λ + 1−λ
d2 and aLj = 1−λ

d2 .
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(f) Channels with one symmetry axis. Channels of the form (3) with all but one of the tJ
identical have multipliers [λ, λ, . . . , λ, η, λ, . . . , λ] with η = s + tL. They are naturally
regarded as ‘squashed’ when 0 < η < λ. In general, they are symmetric with respect to
‘rotations’ about the special axis L. The boundary case with one tL = 0 has η = dλ−1

d−1 .
This is called a ‘two-Pauli’ channel in the qubit case; we call them ‘maximally squashed’.
These channels can be written in several equivalent forms

�
MxSq
L,λ =

∑
K �=L

1

d
�PD

K,ζ = ζI +
∑
K �=L

1

d
�

QC
K,ζ = λI +

1 − λ

d

∑
J �=L

�X
L

= λI + (1 − ζ )N − 1 − ζ

d
�

QC
L = �

dep
λ +

1 − ζ

d

(
N − �

QC
L

)
, (15)

with 1 � λ = ζ + 1
d
(1 − ζ ) � 0.

(g) For qubits, the channel which takes

ρ �→ σJ �
dep
λ σJ = λσJ ρσJ + (1 − λ) 1

2 I J = 1, 2, 3, (16)

can be thought of as depolarizing from conjugation with σJ ; its multiplier has the form
[−λ, +λ,−λ] (with the + sign in the J th position). For d > 2, this has no direct
generalization, but one might consider channels which ‘depolarize’ from the other extreme
points, e.g., λ�X

L + (1−λ)N which has multiplier
[
λ, −λ

d−1 , . . . , −λ
d−1

]
. These channels are

also a subclass of those with one symmetry axis.

2.4. Convex structure

The set of axis channels is convex, and we have already noted that the extreme phase-damping
channels �X

L = −1
d−1I + d

d+1�
QC
L are extreme points of this set. Adding the identity I gives all

the extreme points.

Theorem 2. When Cd has d + 1 MUB, the set of channels constant on axes is the convex hull
of the identity I and the extreme phase-damping channels �X

L .

Proof. It suffices to observe that when � is given by (3), it can be written as

� = a00I +
d+1∑
J=1

aJ �X
J = 1

d
[(d − 1)s + 1]I +

d − 1

d

d+1∑
J=1

tJ �X
J , (17)

with coefficients as in (10) and (3) respectively. The TP and CP conditions (4) imply that the
coefficients sum to 1 and are non-negative. �

Each of the d + 2 inequalities (13) defines a half space corresponding to the hyperplane
defined by d + 1 of the extreme points in theorem 2. Then the intersection of these half
spaces yields the convex set of channels constant on axes. When d = 2, (13) is equivalent to
|λj ±λk| � |1 ±λ| for j, k,  distinct, which are the conditions [10, 27, 35] needed to ensure
that a unital qubit channel is CP.

It is now well known [10, 27, 35] that the multipliers [λ1, λ2, λ3] for the unital
qubit channels form a tetrahedron with vertices at [1, 1, 1], [1,−1,−1], [−1, 1,−1], and
[−1,−1, 1], and that the subset of entanglement breaking (EB) channels corresponds to
the octahedron obtained from the intersection of this tetrahedron with its inversion through
the origin, as shown in figure 1. Removing this octahedron leaves four disjoint sets (also
tetrahedrons) which can be transformed into one another by conjugation with the Pauli matrices
σJ . Each of these sets has multipliers with fixed signs determined by one of the maps �X

J

and is the convex hull of this map and three QC channels. For example, the set with only
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Figure 1. The tetrahedron of qubit channels and the octahedral EB subset.

[−1,1,−1] [−1,−1,1]

[1,−1,−1]

[−1
2
,1,−1

2
,−1

2
] [−1

2
,−1

2
,1,−1

2
]

[1,−1
2
,−1

2
,−1

2
]

[−1
2
,1,−1

2
,−1

2
] [−1

2
,−1

2
,1,−1

2
]

[1,−1
2
,−1

2
,−1

2
]

d = 2 d = 3: EB d = 3: PPT

Figure 2. Base of qubit and qutrit channels constant on axes showing subregions with all λJ � 0.
For qubits this is also the EB region. For qutrits, this is a tetrahedron which lies strictly within the
EB region; the sphere shows the qutrit PPT channels, as discussed in section 3.3.

λ1 � 0 is the convex hull of �X
1 (ρ) = σ1ρσ1 with multiplier [1,−1,−1] and the QC maps

with multipliers [1, 0, 0], [0,−1, 0], [0, 0,−1].
When d > 2, this picture is modified significantly. The set of CPT maps is still the convex

hull of I with multiplier [1, 1, . . . , 1] and d + 1 channels whose multipliers are permutations
of
[
1, −1

d−1 , . . . , −1
d−1

]
. However, the identity is a distinguished vertex from which edges extend

to give the d + 1 lines of phase-damping channels between I and �X
L . One also has a ‘base’

formed from the edges connecting pairs of the latter. There is only one symmetry axis. After
removing the EB channels, one again has a disjoint region �0 which contains the non-EB
channels with all multipliers non-negative; this is the convex hull of I and the �

QC
L , as before.

However, the picture with negative multipliers is far more complex.
For d = 3, the ‘base’ corresponds to the tetrahedron given by the convex hull of the four

vertices �X
L with L = 1, 2, 3, 4, as shown in figure 2. The centre of each of the four faces is

�XEB
L = 1

d

∑
J �=L �X

J . Since this is EB, the tetrahedron obtained by joining these four points
(which is the set of channels with all λk � 0) is a subset of the EB channels. However, it
follows from theorem 4 in section 2.4 that no point on an edge connecting two �X

L is EB which
means that, unlike the qubit case, removing the EB channels from the base does not leave d
disjoint sets. This argument extends to all d > 2.

3. Entanglement breaking channels

3.1. General considerations

A channel is called entanglement breaking (EB) if its action on half of an entangled state is
separable. In fact, it suffices to consider its action on the maximally entangled state |β〉 =

1√
d

∑
k |ek ⊗ ek〉. It is well known that � ↔ 1

d

∑
jk |ej 〉〈ek| ⊗ �(|ej 〉〈ek|) = (I ⊗ �)|β〉〈β|
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gives a one-to-one correspondence between CPT maps taking Cd �→ Cd and density matrices
on Cd2

. The latter is called the Choi–Jamiolkowski (CJ) matrix or state representative of the
channel. In [18], it was shown that a channel is EB if and only if its CJ matrix is separable.

A channel of the form � = tL�
QC
L + (1 − tL)N is clearly EB when tL � 0. However,

even for the larger CP range −1
d−1 � tL � 1, it is EB because

�
(∣∣ψL

j

〉〈
ψL

k

∣∣) = δjk

∑
n

(
1

d
(1 − tL) + tLδjn

) ∣∣ψL
n

〉〈
ψL

n

∣∣. (18)

This implies that the CJ matrix is diagonal in the product basis
{∣∣ψL

j ⊗ ψL
k

〉}
and hence

separable. The CP endpoints of this line are �
QC
L for tL = 1 and �XEB

L ≡ −1
d−1�

QC
L + 1

d−1N
for tL = −1

d−1 .
The positive partial transpose (PPT) condition for separability applied to the CJ matrix of

a channel says that d(T ⊗ �)|β〉〈β| = ∑
jk |ek〉〈ej | ⊗ �(|ej 〉〈ek|) is positive semi-definite.

This is a necessary condition for a channel to be EB. By applying the PPT condition to the
phase-damping channel �PD

L,λ, one can see that it is EB if and only if λ = 0.

It seems natural to conjecture that �
QC
L and �XEB

L are the only extreme points of the
convex set of EB channels constant on axes. However, this is not the case, as one can see from
the following theorem which is proved in appendix C.3, where we also show that �XEB

L is a
true extreme point for any prime d.

Theorem 3. When d = 3, the channels �
QC
L ,�XEB

L and �YEB
L are extreme points of the convex

set of EB.

For d = 2, only the first two channels give extreme points; the channel �YEB
L is on the

boundary of EB subset, but not extreme. For d = 3, it seems natural to conjecture that set of
EB channels constant on axes is the convex hull of the channels in theorem 3. However, it
appears that there are regions of strict convexity for the PPT condition which yield additional
extreme points for d � 3.

The channels �YEB
L are considered in section 4.2 where they are shown to be extreme

points of the subset of EB channels with one symmetry axis. For d = 3, the channel �YEB
L

has multiplier
[

+1
4 , −1

4 , −1
4 , −1

4

]
. For d = 4, it has multiplier

[
+1
3 , −1

6 , −1
6 , −1

6 , −1
6

]
; the channel

with multiplier
[

+1
5 , −1

5 , −1
5 , −1

5 , −1
5

]
is not CP because

∑
k λk = − 3

5 < − 1
3 violates condition

(13b) and the channel with multiplier
[

+2
9 , −2

9 , −2
9 , −2

9 , −2
9

]
is EB but not extreme.

3.2. Multipliers for entanglement-breaking maps

We now consider EB criteria which can be stated in terms of the multiplier for a channel
constant on axes. Any EB channel constant on axes must have

∑
L |λL| � 1. This is an

immediate consequence of the more general requirement that ‖�‖1 � 1 for any EB channel.
This is equivalent to what is sometimes called the ‘computable cross norm’ (CCN) condition
or ‘rearrangement criterion’ for separability. However, as explained in appendix A.7, this
condition can be applied directly to the channel without computing its CJ matrix or performing
any type of rearrangement.

Theorem 4. Let � be a channel constant on axes. If � is EB, then
∑

L |λL| � 1. Moreover,
if all multipliers λk � 0, then � is EB if and only if

∑
L λL � 1.
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Proof of theorem 4. The necessity follows immediately from theorem 24 and the fact that the
singular values, φs , of � are |λL|, each with degeneracy d − 1, and 1 which is non-degenerate.
Thus

d �
∑

s

|φs | = 1 + (d − 1)
∑
L

|λL|.

Sufficiency follows immediately from the fact that when all λL � 0 and
∑

L λL � 1, one can
write

� =
∑
L

λL�
QC
L +

(
1 −

∑
L

λL

)
N (19)

as a convex combination of EB channels. �

When an EB channel is written in the form (3), we see that s � 0. This is an immediate
corollary of theorem 4 and

1 �
∑

J

|λJ | �
∑

J

λJ = (d + 1)s +
∑

J

tJ = ds + 1. (20)

In [34], it was shown that a unital qubit channel is always EB when some λk = 0. It
follows from (13a) that if the smallest λJ = 0 then

∑
J �=L λJ � 1 so that the channel is EB,

giving a partial extension of the qubit result. However, when some λk are negative, a channel
with some λJ = 0 need not be EB as shown by the following example for d = 3:

� = 2
3�X

1 + 1
3�X

2 = [
1
2 , 0,− 1

2 ,− 1
2

]
(21)

Since
∑

k |λk| = 3
2 > 1, theorem 4 implies that this channel is not EB.

When all λk � 0, inequality (13b) implies that
∑

k |λk| � 1
d−1 and hence that � is

in the convex hull of N and the set
{
�XEB

J

}
. Thus every channel with all λk � 0 is EB.

What remains is to find precise necessary and sufficient conditions for a channel with both
positive and negative multipliers λL to be EB. In figure 3, in the following section, there are
channels with

∑
J |λJ | � 1 which lie outside the PPT region; thus we see the condition from

theorem 4 is not sufficient for EB.
Channels with exactly one symmetry axis (i.e., those for which d of the λJ are equal) are

studied in section 4, in which we show that
∑

L |λL| � 1 is necessary and sufficient for � to be
EB. When d = 3, this implies that the channel �YEB

L = [
1
4 ,− 1

4 ,− 1
4 ,− 1

4

]
is EB. This channel

is outside the convex hull of �
QC
L and �XEB

L because
∑

λJ <0 λJ = − 3
4 < − 1

2 = − 1
d−1 .

It is worth summarizing what is known about the EB subset of channels constant on axes.

(a) If � is EB, then
∑

J |λJ | � 1.
(b) If all λJ � 0, and

∑
J |λJ | � 1, then � is EB.

(c) If all λJ � 0 and some λJ = 0, then � is EB.
(d) If � has one symmetry axis, then � is EB if and only if

∑
J |λJ | � 1.

(e) There are channels which satisfy
∑

J |λJ | � 1, but are not EB.
(f) If all λJ � 0, then � is EB.

We can also use the λJ ’s to state a necessary condition for an axis channel to be PPT.

Theorem 5. If a channel � constant on axes satisfies the PPT condition (T ⊗�)(|β〉〈β|) � 0,
then

∑
J λJ � 1.
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Proof. First observe that for any QC channel the antisymmetric subspace is in the kernel of
both (I⊗�QC)(|β〉〈β|) and (T ⊗�QC)(|β〉〈β|). To see this consider |v12〉 = |f ⊗g〉−|g⊗f 〉
and write |f 〉 = ∑

j xj |j 〉, |g〉 = ∑
j yj |j 〉 in the basis corresponding to �QC. In this basis

(I ⊗ �QC)(|β〉〈β|) = (T ⊗ �QC)(|β〉〈β|) =
∑
kk

|kk〉〈kk|,

and |v12〉 = ∑
jk(xjyk − yjxk)|jk〉 so that

(I ⊗ �QC)(|β〉〈β|)|v12〉 = (T ⊗ �QC)(|β〉〈β|)|v12〉 = 1

d

∑
kk

|kk〉(xkyk − ykxk) = 0.

One similarly finds that the antisymmetric subspace is an eigenspace of (T ⊗ I)(|β〉〈β|) with
eigenvalue −1:

(T ⊗ I)(|β〉〈β|)|v12〉 = 1

d

∑
jk

|kj 〉〈jk|
∑
mn

(xmyn − ynxm)|mn〉

= 1

d

∑
jk

(xjyk − ykxj )|kj 〉 = −|v12〉.

Thus, if � has the form (3) and satisfies the PPT condition, then choosing |v12〉 antisymmetric
gives

0 � 〈v12|(T ⊗ �)(|β〉〈β|)|v12〉 = −s, (22)

which implies s � 0. Then (4) implies
∑

J λJ = ds + 1 � 1. �

3.3. EB and bound entanglement when d = 3

We now consider some implications of the PPT and CCN conditions in more detail when
d = 3. Some of the results about bound entanglement were obtained independently in [5] by
a different method.

For d = 3, it is shown in appendix C.3 that the maps �XEB
J and �YEB

J are extreme points
of the convex subset of EB channels. These points lie in the ‘base’ tetrahedron shown in
figure 2, which also shows the tetrahedron whose vertices �XEB

J are the four centres of the
faces. Reflecting this small tetrahedron through its centre gives the convex hull of the four
�YEB

J . The convex hull of the eight points �XEB
J and �YEB

J is a subset of the EB channels
and is inscribed in the sphere

∑
J |λJ |2 = 1

4 , which is precisely the set of PPT maps in the
base tetrahedron. We conjecture that all maps in this sphere are EB; this is supported by the
numerical work of Audenaert [3].

The observation about the sphere is a special case of the following theorem which is
proved in appendix C.3.

Theorem 6. When d = 3, a channel constant on axes is PPT if and only if it satisfies both∑
J λJ � 1 and

3
∑

J

λ2
J � 1 +

∑
J

λJ +

(∑
J

λJ

)2

. (23)

We can use theorem 6 to find examples of channels which are PPT but not CCN. Such
channels are of some interest because they correspond to bound entangled states. We first
consider |λJ | = x for all J . The case all λJ = x > 0 is covered by theorem 4 and the case
all λJ = −x < 0 has x � 1

8 and is both PPT and CCN. Permutations of [+x,−x,−x,−x]
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0.5

0.5

λ3 = λ4

λ1 = λ2

PPT

PPT

CCN

CCN

EB

Non-EB

I

P1

P2

Figure 3. Qutrit channels with multiplier [λ1, λ1, λ3, λ3], which is the triangle IP1P2. P1 and P2
correspond to the midpoints of two disjoint edges in the base tetrahedron of figure 2. Maps in the
lightly shaded region are known to be EB; those in the dark regions correspond to bound entangled
states.

have one symmetry axis; it is shown in section 4.2 that for these channels the PPT and CCN
regions always coincide. The only remaining possibility is permutations of [+x, +x,−x,−x]
for which

∑
J λJ = 0 and the CP condition (12) holds if and only if x � 1

3 . In this case, (23)
becomes 12x2 � 1. Thus, we can conclude that channels with multiplier [+x, +x,−x,−x]
are CP and bound entangled for 1

2
√

3
< x � 1

3 .
We now consider channels whose multipliers are permutations of [x, x,−y,−y] with

x, y � 0. Let S = ∑
j λJ = 2(x − y) and T = ∑

j |λJ | = 2(x + y). Then x = 1
4 (T + S) and

y = 1
4 (T − S). The CP conditions (12) become S � − 1

2 and 2x + y = 1
4 (3T + S) � 1. The

PPT condition (23) becomes

1 + S + S2 � 6(x2 + y2) � 3
4 (S2 + T 2)

or, equivalently,

3T 2 � (2 + S)2, (24)

which is stronger than the CCN condition T � 1 when S + 2 �
√

3. Thus, we can conclude
that channels of the form [x, x,−y,−y] give bound entangled states in the region

1 < T < min

{
2 + S√

3
,

4 − S

3

}
, (25)

with
√

3 − 2 < S < 1. In terms of x, y, this is the triangle bounded by the lines

2x + y = 1, x + y = 1
2 , and y =

√
3−1
2 + x(

√
3 − 2) (26)

as shown in figure 3 with λ1 = x, λ3 = −y. If we drop the restriction that λ1 = λ2 and
λ3 = λ4, one can find additional channels with bound entangled states for any value of
S ∈ (− 1

2 , 1
)
.

4. One symmetry axis

4.1. General considerations

Channels of the form (A.16) with exactly one tL non-zero have been considered by Fukuda
and Holevo [13] who wrote them in the form
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Table 2. Extreme points of CPT maps bI + a�
QC
1 + (1 − a − b)N .

(a, b) d = 2 d = 3

A (0, 1) I [1, 1, . . . 1] [1, 1, 1] [1, 1, 1, 1]

B
(

d
d−1 , −1

d−1

)
�X

L

[
1, −1

d−1 , . . . −1
d−1

]
[1, −1,−1]

[
1, − 1

2 , − 1
2 , − 1

2

]
E

(
−1
d−1 , 0

)
�XEB

L

[
−1
d−1 , 0, . . . 0

]
[−1, 0, 0]

[
− 1

2 , 0, 0, 0
]

�(a, b) = bI + a�QC + (1 − a − b)N . (27)

When d + 1 MUB exist, assume they are labelled so that �QC corresponds to J = 1 so
that � has multiplier [a + b, b . . . b]. Even when a full set of MUB does not exist, (27) is
a well-defined channel with the QC map in the standard basis |ej 〉. Moreover, we can still
associate �(a, b) with a multiplier in the generalized Pauli basis, as described after (A.4).
Then φs = a + b when Vs = Zj for some j and φs = b otherwise. These channels have
exactly one symmetry axis, i.e., they satisfy the covariance condition �(UρU †) = U�(ρ)U †

when U = ∑
j eiξj |ej 〉〈ej |.

As observed in [13] these maps are CPT when (a, b) is in the convex hull of the points
(1, 0),

(
d

d−1 , −1
d−1

)
,
( −1

d−1 , 0
)

as summarized in table 2. The CJ matrix for maps of the form
(27) can be written as

� = 1

d

∑
jk

|ej 〉〈ek| ⊗

⎧⎪⎨⎪⎩
∑

n

[
(a + b)δkn +

1

d
(1 − a − b)

]|en〉〈en| j = k

b|ej 〉〈ek| j �= k

(28)

= 1

d2

[
(1 − a − b)I + bd2|β〉〈β| +

∑
k

ad|ek ⊗ ek〉〈ek ⊗ ek|
]

, (29)

with |β〉 = 1√
d

∑
k |ek ⊗ ek〉 maximally entangled.

4.2. EB channels

To find the subset of EB maps, observe that the PPT condition applied to (28) is(
1
d
(1 − a − b) b

b 1
d
(1 − a − b)

)
� 0

or, equivalently, 1
d
(1 − a − b) � |b|, which can be written as

a + (d + 1)b � 1 b > 0 (30a)

a − (d − 1)b � 1 b < 0. (30b)

When a + b � 0, (30) is equivalent to the CCN condition
∑

L |λL| � 1. This implies that for
channels of the form (28) the PPT and CCN boundaries coincide.

When d + 1 MUB exist, one can write the maps with a = −b = − 1
d

or 1
d(d−1)

as∑
J �=L

1
d
�

QC
J and

∑
J �=L

1
d
�XEB

J , respectively, which implies that they are EB. Showing that
they are EB for arbitrary d is harder3. It is natural to conjecture that these are also extreme

3 This problem was mentioned at a talk in Torun in June, 2006. Shortly after this talk, Myrheim [30] and Horodecki
[20] independently gave explicit constructions for separability of the CJ matrix for b = 1

d
. However, the separability

of the CJ matrix for b = − 1
d(d−1)

was settled only by observing that X is on the line EY in figure 4 and Y is separable.
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A

B

E
Q

D

R

XY

b

a
d = 2

A

B

E
Q

P

D

R

X
Y

Z

T

b

a

d > 2

See Tables 2, 3 and 4 for coordinates of marked points.
AB: a + b = 1 AE: a(d− 1) − b = −1 BE: a + b(d + 1) = − 1

d−1

RQ: a + b(d + 1) = 1 YQ: a− (d− 1)b = 1
RX: a + b = 0 ZB: a + db = 0

Figure 4. Maps of the form (27) which are CPT are in the convex hull of ABE. Maps in the convex
hull of ERQY are EB. For d = 2, the points X and Y coincide.

points of the convex subset of EB maps of this type, in which case the convex hull of ERQX
in figure 4 would give the EB channels. This is false, however. The next result says that all
channels with one symmetry axis which satisfy the PPT condition (or, equivalently, the CCN
condition) are EB; this corresponds to the convex hull of ERQY as shown in figure 4.

Theorem 7. A channel of the form (27) is EB if and only if it satisfies (30).

Proof. Since the set of EB channels is convex, it suffices to show that each of the channels
corresponding to the points E, R, Q, Y in table 3 and figure 4 is EB. The point Q corresponds
to �QC which is EB and E has a separable CJ matrix because b = 0. Decompositions showing
that the CJ matrices for R and Y are separable and given in appendix C.1. �

It is well known that the depolarizing channel, �
dep
λ , is EB for λ � 1

d+1 , which is
consistent with theorem 4. If one ‘depolarizes’ from an extreme point other than the identity,
the resulting channel � = λ�X

L + (1 − λ)N has one symmetry axis. We can then use
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Table 3. Extreme points for subset of EB channels.

(a, b) d = 2 d = 3

Q (1, 0) �
QC
L [1, 0, . . . 0] [1, 0, 0] [1, 0, 0, 0]

E
(

−1
d−1 , 0

)
�XEB

L

[
−1
d−1 , 0, . . . 0

]
[−1, 0, 0]

[
−1
2 , 0, 0, 0

]
R

(
−1
d

, 1
d

) ∑
K �=L

1

d
�

QC
L

[
0, 1

d
, . . . , 1

d

] [
0, 1

2 , 1
2

] [
0, 1

3 , 1
3 , 1

3

]
Y

(
1
2 ,− 1

2(d−1)

)
�YEB

L

[
d−2

2(d−1)
, −1

2(d−1)
, . . . −1

2(d−1)

] [
0,− 1

2 , − 1
2

] [
1
4 , −1

4 , −1
4 , −1

4

]
Table 4. Other interesting points.

(a, b) d = 2 d = 3

X
(

1
d(d−1)

, −1
d(d−1)

) ∑
K �=L

1
d
�XEB

L

[
0, −1

d(d−1)
, . . . −1

d(d−1)

] [
0, − 1

2 , − 1
2

] [
0, −1

6 , −1
6 , −1

6

]
N (0, 0) [0, 0, . . . 0] [0, 0, 0] [0, 0, 0, 0]

P
(

0, 1
d+1

)
�

dep
1

d+1

[
1
3 , 1

3 , 1
3

] [
1
4 , 1

4 , 1
4 , 1

4

]
D

(
0, −1

d2−1

)
�

dep
−1

d2−1

[
− 1

3 ,− 1
3 , − 1

3

] [
− 1

8 , − 1
8 ,− 1

8 ,− 1
8

]
T

(
d

2d−1 , −1
2d−1

) [
1
3 , −1

3 , −1
3

] [
2
5 , −1

5 , −1
5 , −1

5

]
Z

(
−d

d2−d+1
, 1

d2−d+1

) [
−1
3 , 1

3 , 1
3

] [
−2
7 , 1

7 , 1
7 , 1

7

]

theorem 7 to conclude that the channel is EB when λ � d−1
2d−1 , for which the limiting case

has multiplier
[

d−1
2d−1 , −1

2d−1 , . . . , −1
2d−1

]
. Note that the CP range is −d+1

d2−d+1 � λ � 1 which has
multiplier

[ −d+1
d2−d+1 , 1

d2−d+1 , . . . , 1
d2−d+1

]
at the boundary. For d = 3, the EB portion of the line

segment λ�X
1 + (1 − λ)N is bounded by the channels with multipliers

[
2
5 , −1

5 , −1
5 , −1

5

]
and[−2

7 , 1
7 , 1

7 , 1
7

]
.

4.3. Multiplicativity

Although this topic is more fully studied in the following section, where complete definitions
are given, it is worth making some observations here. We use ‘multiplicative’ to mean that
(35) holds with � arbitrary. One can apply Fukuda’s lemma [11] to show that

� = �dep
y ◦ �PD

L,x = xyI + (1 − x)y�
QC
L + (1 − y)N (31)

is multiplicative for −1
d−1 � x � 1 and −1

d2−1 � y � 1. The relations b = xy and a = (1 − x)y

imply that

−1

d2 − 1
� a + b � 1 and

−1

d − 1
� b

a + b
� 1. (32)

This gives the following result.

Theorem 8. A map of the form (27) is multiplicative if either of the following sets of conditions
hold:

(i) a > 0 and a + bd � 0, or
(ii) a < 0 and −b − 1

d2−1 � a � −bd.
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A

B

E
Q

T

V

R

Y

b

a

Figure 5. Channels with one symmetry axis for which multiplicativity holds for tensor products
with arbitrary channels. The shaded triangle ABN shows channels implied by theorem 8.

The second set of conditions (ii) corresponds to a very small region entirely contained within
the set of EB channels.

The points on the line segment AV in figure 5 correspond to maximally squashed
channels. For any fixed (a∗, b∗) on the segment AV, if one can show that both (35) holds
and νp(�(a∗, b∗)) = νp(�(0, b∗)), then it follows from theorem 26 that multiplicativity
holds for all �(a, b∗) with a∗ � a � 0. Thus, the multiplicativity problem for the triangle
R,A,

(
0, 1

d

)
is reduced to the line AR.

Proving multiplicativity for the triangle YTB presents a different challenge.

5. Optimal output purity

5.1. General considerations

One measure of optimal output purity is the minimal output entropy, defined as Smin(�) =
infγ S[�(γ )], where S(ρ) = −Tr ρ log ρ denotes the entropy of a quantum state. The
additivity conjecture is

Smin(� ⊗ �) = Smin(�) + Smin(�). (33)

This conjecture is particularly important because Shor [38] has shown that it is globally
equivalent to several other important conjectures: additivity of the Holevo capacity, additivity
of the entanglement of formation under tensor products and superadditivity of entanglement of
formation. Recently, Shirokov [36] showed that if (33) holds for all channels � : Md �→ Md ,
then this collection of additivity conjectures also holds in certain infinite-dimensional
situations.

Another measure of the optimal output purity of a channel is the maximal output p-norm
defined as

νp(�) = sup
γ

‖�(γ )‖p = sup
γ

(Tr[�(γ )]p)1/p. (34)

It has been conjectured [2, 28] that νp(�) is multiplicative in the sense

νp(� ⊗ �) = νp(�)νp(�) (35)
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at least for 1 � p � 2. Moreover, it was shown in [2] that if (35) holds for p ∈ (1, 1 + ε) for
some ε > 0, then (33) holds.

Recently, Fukuda [12] showed that if (33) or (35) holds for all unital channels, then it
holds for arbitrary �. Our original motivation for studying channels constant on axes was to
find a class to which one could extend King’s proof [22] of these conjectures in the case of
unital qubit channels. Instead, we have merely gained additional insight into the reasons his
argument does not work when d > 2. We can however prove multiplicativity for channels
constant on axes in the important case p = 2, as is shown in section 5.4.

We conjecture that for channels constant on axes, the maximal output p-norm and minimal
output entropy are both achieved with an axis state.

Conjecture 9. Let � be a channel of the form (3). Then the maximal output p-norm
and minimal output entropy can be achieved with an axis state, i.e., for each p one can
find L (which may depend upon p) such that νp(�) = ∥∥�(∣∣ψL

n

〉〈
ψL

n

∣∣)∥∥
p

= ∥∥�dep
λL

∥∥
p

, and

Smin(�) = S
(
�
(∣∣ψL

n

〉〈
ψL

n

∣∣)) = Smin
(
�

dep
λL

)
for some L.

When some of the λJ < 0, the axis L can depend upon p and our evidence for this conjecture
is only numerical, as described in the following section. When all λJ � 0, the analogy
with unital qubit channels suggests that L satisfies supJ λJ = λL, and it is easy to see that if
λJ < λL then

∥∥�(∣∣ψn
J

〉〈
ψn

J

∣∣)∥∥
p

�
∥∥�(∣∣ψn

L

〉〈
ψn

L

∣∣)∥∥
p

for all p. However, we have not been able
to exclude the possibility that νp(�) is attained on a superposition of axis states.

Conjecture 9 is known for certain classes of axis channels, such as QC channels and
depolarizing channels, and it is shown to hold for all axis channels in the special cases p = 2
and p = ∞, as discussed in appendix B.

The following result, which is a special case of lemma 28 proved in appendix B, is
consistent with this conjecture.

Theorem 10. Let � be a channel constant on axes and γ (t) a differentiable one-parameter
family of pure states with γ (0) = ∣∣ψJ

n

〉〈
ψJ

n

∣∣ an axis state. Then for all p, ‖�[γ (t)]‖p has a
critical point at t = 0. Moreover, S(�[γ (t)]) also has a critical point at t = 0. If �1 and
�2 are both constant on axes, this extends to the channel �1 ⊗ �2 with input γ12(t), where
γ12(0) = ∣∣ψJ

n ⊗ ψK
m

〉〈
ψJ

n ⊗ ψK
m

∣∣.
Whenever νp(�) is achieved with an axis state, one can use Fukuda’s lemma [11] to show

that if (35) holds for �, it can be extended to � ◦ MJ , where MJ is a convex combination
of conjugations on a single axis as in (A.20) (see appendix A.6). The key point is that
MJ

(∣∣ψJ
n

〉〈
ψJ

n

∣∣) = ∣∣ψJ
n

〉〈
ψJ

n

∣∣.
Theorem 11. Let � be a channel constant on axes and let MJ be given by (A.20). If
νp(�) = ∥∥�(∣∣ψJ

n

〉〈
ψJ

n

∣∣)∥∥
p

and (35) holds for νp(� ⊗ �), then it also holds for � ◦ MJ .

5.2. Numerical study of new behaviour

For a channel constant on axes, the output of any axis state is

�
(∣∣ψL

n

〉〈
ψL

n

∣∣) = (1 − λL)
1

d
I + λL

∣∣ψL
n

〉〈
ψL

n

∣∣, (36)

which has eigenvalues 1
d

[1 + (d − 1)λL] and 1
d
(1 − λL) with degeneracy d − 1. This implies

νp(�) � νp

(
�

dep
λL

)
when λL � − 1

d2−1 . When all λK � 0, we conjecture that this is optimal,
i.e., νp is achieved with an axis state corresponding to the largest λK and provide some evidence
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in this direction. We also show that channels with negative multipliers can have fundamentally
different behaviour.

In particular, it can happen that 0 < −λL1 = |λL1 | < λL2 but
∥∥�(∣∣ψL1

n

〉〈
ψL1

n

∣∣)∥∥
p

>∥∥�(∣∣ψL2
n

〉〈
ψL2

n

∣∣)∥∥
p

. For example, consider the channel

� = a�X
1 + (1 − a)�X

2 with multiplier

[
3a − 1

2
,

2 − 3a

2
,−1

2
,−1

2

]
. (37)

For a = 2
3 , this becomes [+0.5, 0,−0.5,−0.5] which has larger output p-norms when

1 < p < 2 for inputs along the −0.5 axes than for those along the +0.5 axis. This behaviour
persists for [0.6,−0.1,−0.5,−0.5] when 1 < p < 1.2. Moreover, for 0 < λ1 < 0.65,
the minimal output entropy of the channel with multiplier [λ1, 0.5 − λ1,−0.5,−0.5] is
Smin(�) = S

[
�
(∣∣ψ3

n

〉〈
ψ3

n

∣∣)] = 1, but inputs on the ‘long’ axis have S
[
�
(∣∣ψ1

n

〉〈
ψ1

n

∣∣)] > 1.

Numerical studies of the minimal output entropy of channels with multiplier [λ1, 0.5 −
λ1,−0.5,−0.5] have been carried out for λ1 near the crossing point λ1 = 0.659. For a single
use of the channel, Smin(�) is always achieved with an axis state and satisfies Smin(�) = 1 for
λ1 < 0.659. For the product, one finds Smin(� ⊗ �) = 2 is always achieved with a product of
axis states. Moreover, near the crossing the maximally entangled state |β〉 = 1√

d

∑
n

∣∣ψ1
n ⊗ψ3

n

〉
has entropy S[(� ⊗ �)(|β〉〈β|)] = 2.74041.

5.3. Non-negative multipliers

King’s approach to the unital qubit channels is to reduce the problem to multiplicativity of
‘two-Pauli’ channels’ �

MxSq
L,x by considering channels of the form [λ1, λ2, x] with |λj | � x.

This subclass of channels has extreme points with multipliers

[x, x, x], [−x,−x, x], [2x − 1, x, x],

[x, 2x − 1, x] [1 − 2x,−x, x] [−x, 1 − 2x, x]
(38)

for x > 1
3 . Here, �

MxSq
J,x has multiplier [2x − 1, x, x]. If one can show that νp

(
�

MxSq
J,x

) =
νp

(
�

dep
x

)
and that νp

(
�

MxSq
J,x ⊗�

)
satisfies (35), then multiplicativity follows from lemma 25,

first using B = νp

(
�

dep
x

)
and then using B = νp

(
�

dep
x

)
νp(�). King’s argument exploits the

fact that changing λj → −λj forj = 1, 2 is equivalent to a unitary conjugation with σz. This
property does not extend to channels constant on axes. However, we can make an analogous
reduction on the subset of channels with non-negative multipliers under the assumption that
conjecture 9 holds for these channels.

For qubits, the subset of channels with multiplier [λ1, λ2, x] with 0 � λj � x has extreme
points

[0, 0, x], [0, x, x], [x, 0, x], [x, x, x] x � 1
2

[0, 0, x], [0, 1 − x, x], [1 − x, 0, x], [2x − 1, x, x], [x, 2x − 1, x], [x, x, x] x > 1
2

as shown in figure 6. In both cases, the first three channels are EB and the last the depolarizing
channel. The difference between the two situations is that the latter includes channels of the
form �

MxSq
J,x but the former does not. For d > 2, the convex set of channels which are not

EB and satisfy 0 � λJ � λd+1 = x has analogous extreme points as shown in figure 7. We
observe here only that any channel �x in this set is a convex combination of

(a) �EB
x and �

dep
x when 0 < x � 1

d
, and

(b) �EB
x ,�

dep
x and

{
�

MxSq
J,x : J = 1, 2, . . . , d

}
when 1

d
< x � 1,
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0.5

λ2

λ3 D

S

S

S

D S

0.5

0.5

λ2

λ3

1
3 ≤ x ≤ 1

2 x > 1
2

Figure 6. Qubit channels with |λj | � x = λ1, with grey shading indicating the EB region
and cross-hatch the subset of the non-EB channels with all λj � 0. The evident symmetry for
λj �→ −λj is lost for d > 2 but the picture for λj � 0 is similar, as shown in figure 7.

D

S

S

S

λ3

λ4

D

S

S

0.4

0.4

Figure 7. Qutrit channels with 0 � λj � λ1 = 0.4. The 3-dimensional view is a cube with three
corners removed. The vertices of the front corner are the squashed channel S = [0.4, 0.4, 0.4, 0.1]
along with [0.4, 0.4, 0.2, 0] and [0.4, 0.2, 0.4, 0]. The two-dimensional view shows the face of the
cube with λ2 = 0.4.

where �EB
x denotes some EB channel whose multiplier satisfies 0 � λJ � x. The extreme

EB channels of this type will be permutations of [0, . . . , 0, 1 − κx, x, . . . x] with κ chosen so
that 0 < 1 − κx � x.

The following consequence of lemma 25 shows that if conjecture 9 holds for EB channels
with non-negative multipliers, then we can reduce the general situation to the maximally
squashed channels.

Theorem 12. Let � be a channel of the form (11) with λJ � 0 for all J . Choose L∗ so that
supJ λJ = λ∗

L. Then

(a) if conjecture 9 holds for �
MxSq
J,λL∗ and any EB channel with 0 � λJ � λ∗

L, then

νp(�) = ∥∥�(∣∣ψL∗
n

〉〈
ψL∗

n

∣∣)∥∥
p

= νp

(
�

dep
λL∗

); (39)

(b) if p � 1, the hypotheses in (a) above hold, and (35) holds for νp

(
�

MxSq
J,λL∗ ⊗ �

)
, then (35)

holds for νp(� ⊗ �).

Proof. A channel satisfying the hypothesis above is a convex combination of �
dep
x and EB

channels with multipliers that are permutations of [0, . . . , 0, 1 − κx, x, . . . x]. By the remark
in section 4.3 such EB channels have the same maximal output p-norm as νp

(
�

dep
x

)
. Then
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part (a) follows from lemma 25 with B = νp

(
�

dep
x

)
and the fact that the bound can be attained

with an axis state. Both depolarizing channels [24] and EB channels [25] are multiplicative
for all p. Therefore, part (b) also follows from the lemma 25 with B = νp

(
�

dep
x

)
νp(�). �

In the case of qubits, conjecture 9 is known to hold, so theorem 12 gives a new proof
of multiplicativity for channels whose multiplier [λ1, λ2, λ3] satisfies 0 � λj � 1

2 and∑
j λj > 1. One can then conjugate with σj and combine with known results about EB

channels to prove that (35) holds for any unital qubit channel with all |λj | � 1
2 . This last step

does not extend to d > 2. If the maximal λj is greater than 1
2 for a qubit channel, this gives a

new reduction of multiplicativity to maximally squashed channels. Both cases for qubits can
be seen in figure 6.

Recall �
MxSq
L,x = ∑

K �=L �PD
L,ζ with ζ as in (15) and that intuitively one would expect that

νp

(
�

MxSq
L,x

)
is achieved with a state which is 0 on the ‘short’ axis L, i.e., for which uLj = 0 in

(A.15). For such states, King’s proof [24] of the multiplicativity of the depolarizing channel
carries over. However, the channel �

MxSq
L,x has symmetry around the axis L. This does not

allows one to assume that wLj = 0. To overcome this problem, King [22] uses the convex
decomposition �

MxSq
3,x = 3x−1

2x
�PD

2.x + 1−x
2x

σ1�
MxSq
2.x σ1 or, equivalently,

[x, x, 2x − 1] = 3x − 1

2x
[x, 1, x] +

1 − x

2x
[x, 1 − 2x,−x] (40)

after making a rotation so that ρ = 1
2 (I + w1σ + w3σ3), i.e., w2 = 0. Then both channels

on the right have νp(�) = νp

(
�

dep
x

)
. However, the channel [x, 1 − 2x,−x] with negative

multipliers has no direct analogue in the d > 2 case. Therefore, King’s argument does not
generalize. Amosov [1] has given a new proof of additivity (33) for unital qubit channels.
Because his argument is based on King’s decomposition (40), it does not readily generalize to
d > 2.

Proving (35) for channels with positive multipliers seems to require a new approach to
the multiplicativity for channels �

MxSq
L,x . However, we have shown that if conjecture 9 holds,

then multiplicativity for channels with positive multipliers can be reduced to the maximally
squashed case. Channels with some negative multipliers present a different challenge.

5.4. Results for p = 2

In the case p = 2, we can prove more, including multiplicativity for all channels constant
on axes. The results of this section are based on the following theorem which was proved
by Fukuda and Holevo in [13] in the case of generalized Pauli matrices; inequality (41)
was obtained independently by Nathanson in [26]. For completeness, we present a proof in
appendix B.4 (essentially identical to that in [13]) that covers the more general class of maps
that are diagonal in an orthogonal basis of unitaries (OBU), as described in appendix A.

Theorem 13 (Fukuda-Holevo-Nathanson). Let � be a CPT map which is diagonal when
represented in an OBU, and let φs denote its diagonal elements. Then

ν2(�) �
(

1

d
[1 + (d − 1) sup

s

|φs |2]

)1/2

. (41)

Moreover, if the bound (41) is attained, then

ν2(� ⊗ �) = ν2(�)ν2(�) (42)

for any CPT map �.
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This result implies that all channels constant on axes satisfy the multiplicativity conjecture
for p = 2.

Theorem 14. Let d be a prime power and � : Md �→ Md be a CPT map constant on axes.
Then (35) holds for p = 2, i.e., ν2(� ⊗ �) = ν2(�)ν2(�) with � an arbitrary CPT map.

Proof. By theorem 13, it suffices to show that

[ν2(�)]2 = 1

d
[1 + (d − 1)λ2], (43)

where λ = supL |λL| = supL |s + tL|. For channels constant on axes, it is straightforward to
verify that (43) is attained with any axis state

∣∣ψL∗
n

〉〈
ψL∗

n

∣∣ for which |λL∗ | = λ. �

One can extend this slightly to cover channels of the form (A.16), which includes example
4 in [13].

Theorem 15. Let � be a channel on Md of the form (A.16) with κ MUB. Then (35) holds for
p = 2 with � being an arbitrary CPT map.

For channels in the OBU {ULj } defined in theorem 20, one can relax the requirement that
the channel is ‘constant’ on the longest axis.

Theorem 16. Let � be a channel constant on axes, λL0 � |λL|∀L, and MJ a channel of the
form (A.20) with J = L0. If either � = xMJ + (1 − x)�, with 0 � x � 1, or � = � ◦ MJ ,
then (35) holds for p = 2 with � being an arbitrary CPT map.

Proof. Both � and MJ are diagonal in the orthogonal unitary basis {ULj } with multipliers λL

and µLj respectively. In both cases, one can verify that � is also diagonal with φL0j = λ∗

independent of j and φL0j � |φLj |. (In the first case, λ∗ = x + (1 − x)λL0 ; in the second
λ∗ = λL0 .) Therefore, sups |φs | = λ∗ and any axis state

∣∣ψL0
n

〉〈
ψL0

n

∣∣ saturates the bound (41).
The result then follows from theorem 13. �

The channel � is constant on the ‘longest’ axis in the sense that the multiplier φL0j is
independent of j on this axis. But it is the constraint aL0j independent of j that has been
relaxed. Maps of the form above with � a depolarizing channel were studied in [8] and shown
to satisfy (35) for all p.

6. Bloch sphere picture

The Bloch sphere picture has proved so useful for d = 2 that there have been numerous
attempts to extend it to higher dimensions, and (A.1) can be regarded as such an extension.
Moreover, conditions (A.2) extend the standard criterion on the components of the vector
representing a density matrix. The fact that the vector in (A.1) are complex rather than real is
an inessential consequence of our decision to focus on OBU rather than bases with Hermitian
elements. (Replacing W

j

J and W
−j

J by 1
2

(
W

j

J + W
−j

J

)
and i

2

(
W

j

J − W
−j

J

)
, replaces vJj and

vJ,d−j by Re vJj and Im vJj respectively.) The essential problem is that (A.2) is a necessary,
but not sufficient condition for a matrix of the form (A.1) to yield a positive semi-definite
matrix. Finding simple sufficient conditions for positivity, or even purity, is the real roadblock.

For qubits, all vectors on the surface of the unit ball correspond to pure states and its
image under a CP is an ellipsoid contained in this ball. As shown in [10, 27, 35] not every
ellipsoid corresponds to a CP map, but those that do define a unique CP map with positive
multipliers. However, the role of negative multipliers is lost completely. The Bloch sphere
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picture does not show rotations (unless composed with another map) and does not show the
effect of, e.g., a bit flip even when composed with another map.

The channels presented here do allow a partial generalization of the Bloch sphere picture
in the sense of axes, with a multiplier effect similar to that of unital qubit channels in the case
of positive multipliers. The inadequacy of this picture in the case of negative multipliers arises
already for qubits. However, it is obscured by the unitary equivalence of maps composed with
conjugation by a Pauli matrix σk . For channels constant on axes, this simple map is replaced
by �X

J , which is the average of conjugations with powers of the axis generators W
J , and the

picture for negative multipliers breaks down completely.
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Appendix A. Convex combinations of unitary conjugations

A.1. Orthogonal bases of unitary operators

An orthogonal basis of unitaries (OBU) for Md is a set of d2 unitary matrices
{V0, V1, . . . , Vd2−1} with V0 = I satisfying Tr V

†
s Vt = dδst . Since Md becomes a Hilbert

space when equipped with the inner product 〈A,B〉 = Tr A†B, one can expand an element of
Md in this basis. In particular, any density matrix, ρ, which is a positive semi-definite operator
with Tr ρ = 1 can be written in the form

ρ = 1

d

d2−1∑
s=0

vsVs = 1

d

[
I +

∑
s>0

vsVs

]
, (A.1)

with vs = TrV †
s ρ. It follows easily [13, 26] that

|vs | � 1 and
∑
s>0

|vs |2 � d − 1, (A.2)

with equality in the latter if and only if ρ is pure. Although (A.1) can be regarded as
a generalization of the Bloch sphere representation to d > 2, the conditions in (A.2) are
necessary but not sufficient for an expression of the form (A.1) to define a positive semi-
definite operator.

Let {|ψn〉} be an orthonormal basis for Cd . Then the span of {|ψn〉〈ψn|} is a d-dimensional
subspace of the d2-dimensional space Md . Now suppose that {Vs} is an OBU for Md such
that {V0, V1, . . . , Vd−1} span the same subspace. Then the projections γn = |ψn〉〈ψn| and the
operators 1√

d
Vs with s = 0, 1, . . . , d −1 give two orthonormal bases for this subspace. Hence

they are related by a unitary transformation, i.e.,

γn = 1

d

d∑
s=0

xnsVs and Vs =
d∑

n=1

xnsγn, (A.3)
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with 1√
d
(xns) being unitary. Since the γn commute, so do the Vs . In fact, the vectors |ψn〉

are simultaneous eigenvectors of these Vs with (A.3) the spectral decomposition. This (or the
purity condition (A.2)) implies that |xns | = 1 for all n, s.

We will consider two special cases of an OBU in detail: those associated with the
generalized Pauli matrices introduced in appendix A.3 and those associated with generators
of mutually unbiased bases (MUB) introduced in appendix A.4. In both cases, each matrix Vs

will be labelled by a pair of indices, so that s ∼ (j, k) or s ∼ (J, j). Despite its two indices,
vjk gives coefficients in a basis and is best regarded as a column vector after some ordering of
the indices rather than as a matrix.

A.2. Representations of linear operators on Md

When a linear operator � : Md �→ Md is represented by the d2 × d2 matrix T � with elements

Tst = 1

d
Tr V †

s �(Vt ), (A.4)

its action on ρ corresponds to vs �→ ∑
t Tst vt . When Tst = δstφt is a diagonal matrix, the

channel is called diagonal and its action on ρ reduces to vs �→ φsvs , i.e., it acts like a multiplier
on the vector representing ρ.

If the unitary requirement is temporarily dropped and Vs ∼ |ej 〉〈ek| in the standard basis
for Cd , then T(i,k),(j,) = Tr|ei〉〈ek|V (|ej 〉〈e|) has the same entries as the Choi–Jamiolkowski
state representative but a very different ordering! It is important that the pair (i, k) labels rows
and (j, ) columns in order to correctly describe the action of � by matrix multiplication. The
conversion from this ordering to the Choi–Jamiolkowski state form is sometimes called the
‘canonical shuffle’ [32].

We are primarily interested in maps of the form

�(ρ) =
∑

s

asVsρV †
s , (A.5)

with as � 0 and
∑

s as = 1. Then � is a unital completely positive, trace-preserving (CPT)
map or unital quantum channel and T0s = Ts0 = δ0s .

Theorem 17. Let {Vs} be an OBU satisfying a commutation relation of the form

VsVtV
†
s V

†
t = ξst I. (A.6)

Then |ξst | = 1 and a channel of the form (A.5) is diagonal with multiplier φs = ∑
u ξsuau.

A channel of the form (A.5) can be represented by a diagonal matrix even when the
commutation condition does not hold. However, when only one as is non-zero, i.e.,
�(ρ) = VuρV

†
u for some fixed u, the channel is diagonal if and only if (A.6) holds.

The next result may seem obvious; however, if the Vs are not mutually orthogonal, one
can have a map of the form (A.5) which is CP even though some aJ are negative. An example
is the qubit channel

�(ρ) = VρV † = ρ + σxρσx − V †ρV, (A.7)

where V = 1√
2

(
1 i
i 1

)
.

Theorem 18. Let {Vs} be an OBU and � a map of the form (A.5). Then � is CP if and only
if all aJ � 0.
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Proof. The key point is that when �(ρ) = UρU † with U unitary, its CJ matrix is the projection
|U 〉〈U |, where we employ a slight abuse of notation in which |U 〉 denotes the d2 × 1 vectors
obtained by ‘stacking’ the columns of U. When � has the form (A.5), its CJ matrix can be
written as

�� = 1

d

∑
s

as |Vs〉〈Vs |. (A.8)

Moreover, when the Vs are mutually orthogonal, the corresponding |Vs〉 are also orthogonal
and are therefore eigenvectors of the CJ matrix with eigenvalue as . Thus, �� is positive
semi-definite if and only if all as � 0. �

A.3. Generalized Pauli matrices

In d dimensions, one can define the generalized Pauli matrices X and Z by their action on a
fixed orthonormal basis Cd :

X|ek〉 = |ek+1〉 and Z|ek〉 = ωk|ek〉, (A.9)

with ω = ei2π/d and addition mod d in the subscript. They are unitary and satisfy
the commutation relation ZX = ωXZ. Thus, the set of generalized Pauli operators
P = {XjZk : j, k = 0, 1, . . . , d − 1} forms an orthogonal unitary basis for Md . We are
interested in channels which have the form (A.5) in this basis, i.e., for which

�(ρ) =
∑
jk

ajkX
jZkρ(XjZk)†, (A.10)

with ajk � 0 and
∑

jk ajk = 1. In view of theorem 17, the matrix representing � is a diagonal
matrix; however, the diagonal elements will not in general be real.

It is evident that Z has the same properties as one of the WJ in section 2.1. In addition,
X and many other members of P are unitarily equivalent to Z and share these properties.
Whenever W = XjZk with either j or k relatively prime to d, then W generates a cyclic group
of order d. We want to exploit this group structure to relabel the matrices XjZk and associate
them with ‘axes’ whenever possible. For this purpose we do not need to distinguish between,
e.g., (XjZk)2 and X2jZ2k although (XjZk)2 = ωjkX2jZ2k . With this notion of equivalence,
we find that if W1 = Xj1Zk1 and W2 = Xj2Zk2 with gcd(j1, k1, d) = gcd(j2, k2, d) = 1, then
they generate cyclic groups W1 and W2 which are either equal or have no common element
other than I.

Thus, when d is prime, the set of generalized Pauli operators P can be partitioned
into the identity I and d + 1 disjoint sets of the form {Wj : j = 1, 2, . . . , d − 1}.
Let WK,K = 1, 2 . . . , d + 1 denote some fixed choice of generators, and note that
WLWK = ωtWKWL, where ω = e2π i/d and t is an integer which depends on L and K. (One
specific choice, used in appendix C.2, is WJ = XZJ for J = 1, 2, . . . , d and Wd+1 = Z.) The
eigenvectors

∣∣ψJ
n

〉〈
ψJ

n

∣∣ of these WJ form a set of d + 1 MUB. In view of (6), the eigenstates
of WJ can be regarded as generalizations of the qubit states 1

2 [I ± σj ] at the ends of the three
axes of the Bloch sphere. Thus, it is natural to call them axis states.

When d = d1d2 is not prime, then Md � Md1 ⊗Md2 and one can form another OBU from
tensor products of generalized Pauli matrices in dimensions d1 and d2. However, only when
d = pm is a prime power it is known that one can make a similar division into MUB.

One might ask why we did not consider maps of the form (A.10) with as ∼ ajk independent
of k:

�(ρ) = 1

d

∑
j

aj

∑
k

XjZkρZ−kX−j =
∑

j

ajX
j�QC(ρ)X−j . (A.11)
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We see that such a channel is a convex combination of EB channels and, hence, also EB.
Therefore, this choice would not yield a particularly interesting new class of channels.

A.4. Mutually unbiased bases

A pair of orthonormal bases {ϑn} and {ψn} is called mutually unbiased if 〈ϑm,ψn〉 = 1
d

.
A set of mutually unbiased bases (MUB) for Cd is a collection of orthonormal bases{∣∣ψJ

n

〉}
, J = 1, 2, . . . , κ which are pairwise mutually unbiased as in (2). Our treatment

of MUB is based on an association with generators WJ as in (5).

Theorem 19. A collection of orthonormal bases
{∣∣ψJ

k

〉}
is pairwise mutually unbiased if and

only if the associated generators satisfy the orthogonality condition Tr Wd−m
J Wn

L = dδJLδmn.

Proof. One implication was shown in (7). The other follows immediately from∣∣〈ψJ
m,ψL

n

〉∣∣2 = Tr
(∣∣ψJ

m

〉〈
ψJ

m

∣∣)(∣∣ψL
n

〉〈
ψL

n

∣∣)
= 1

d2

d−1∑
j=0

d−1∑
k=0

ωmj+kn Tr W
j

J Wk
L = 1

d2
Tr I = 1

d
, (A.12)

since Tr W
j

J Wk
L = δj0δk0 when J �= L. �

As observed after (7), one can have at most d + 1 MUB for Cd . It follows immediately
from theorem 19 that the existence of a maximal set of d + 1 MUB is equivalent to the
existence of d + 1 unitary WJ whose powers generate an OBU. Moreover, this is equivalent
to the existence of d + 1 mutually orthogonal unitary WJ with non-degenerate eigenvalues ωk

with ω = e2π i/d .
The question of whether or not a maximal set of MUB exists when d is a composite

of different primes is a difficult open problem. However, it is known that d + 1 MUB exist
when d = pm is a prime power [4, 29, 40]. One method of constructing MUB is based on
partitioning tensor products of Pauli matrices [4]. (See also [21].)

Theorem 20. When d = pm is a prime power, one can decompose the OBU formed by taking
tensor products of generalized Pauli matrices into the identity and d + 1 disjoint subsets of
d − 1 elements which we denote by ULj with L = 1, 2, . . . , d + 1 and j = 1, 2, . . . , d − 1.
Moreover, for each L, {I, ULj : j = 1, 2, . . . , d − 1} forms a maximal Abelian subgroup of
the Pauli group and the simultaneous eigenvectors of the ULj generate the MUB

{∣∣ψL
n

〉}
.

In this setting, the Abelian subgroups which define the MUB are not cyclic. Although
one can still use the MUB to define generators WJ , they need not be equivalent to generalized
Pauli matrices. When d is prime, the WJ can be chosen to be generalized Pauli matrices and,
hence, satisfy a commutation relation.

Question 21. Can the generators WJ for a fixed maximal set of MUB always be chosen so
that they satisfy WJ WL = ξJLWLWJ for some complex numbers ξJL with |ξJL| = 1?

Limited testing when d = 4 suggests that the answer is negative. However, WJ is not unique;
it depends on the ordering of the basis.

Even when d is not a prime power, one can find at least three cyclic subgroups WL with
WK ∩ WL = I when K �= L. One can choose as generators X,Z,XZ, and define a set of
three associated MUB.
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Question 22. When 3 < κ < d + 1, one can always extend
{
W

j

L

}
to an orthogonal basis for

Md . Can this be done so that the additional elements are also unitary?

When κ = 3, the generators WL can be chosen to be generalized Pauli matrices, as in
appendix A.3. Can generators of an MUB always be chosen to be either generalized Pauli
matrices or tensor products of generalized Pauli matrices? If they are always one or the other,
the answer to the previous question is positive.

A.5. Channels based on MUB

Channels constant on axes are special cases of channels of the form (A.5) with Vs ∼ W
j

L

and as � aLj = 1
d−1aL with aL as in (10). One could also consider Vs ∼ ULj as defined in

terms of generalized Pauli matrices in theorem 20; however, a channel of the form (A.5) with
Vs ∼ W

j

L needs not have this form with Vs ∼ ULj . If the coefficients depend on j as well
as L, the conversion could lead to cross terms of the form ULjρULk with j �= k. In fact, a
channel of the form (A.5) with Vs ∼ ULj is always diagonal, but one with Vs ∼ W

j

L need not
be. However, for channels constant on axes, both are diagonal.

For each fixed L,
{
W

j

L

}
j=1,2,...,d−1 and {ULj }j=1,2,...,d−1 span the same subspace of Md ,

and many of the relations in section 2 can be written using ULj . In particular,

�
QC
L (ρ) = 1

d

∑
j

ULjρU
†
Lj (A.13)

and ∣∣ψL
n

〉〈
ψL

n

∣∣ = 1

d

⎡⎣I +
d−1∑
j=1

uLjULj

⎤⎦ , (A.14)

with |uLj | = 1 and
∑

j |uLj |2 = d − 1. We can also rewrite (A.1) as

ρ = 1

d

⎡⎣I +
d+1∑
J=1

d−1∑
j=1

uJjUJj

⎤⎦ , (A.15)

with uJj = Tr U
†
Jjρ.

We are primarily interested in channels of the form (3) when a full set of d + 1 MUB
exists. However, even when only κ < d + 1 MUB exist, one can generalize (3) to

� = sI +
κ∑

L=1

tL�
QC
L + uN , (A.16)

with the CPT conditions given by s +
∑

L tL +u = 1, s + 1
d

∑
L tL + 1

d2 u � 0, and 1
d
tL + 1

d2 u � 0.
When d + 1 MUB exist, the completely noisy channel N : ρ �→ (Tr ρ) 1

d
I satisfies

N = 1

d

∑
L

�
QC
L − 1

d
I, (A.17)

which allows one to reduce (A.16) to (3) by letting s → s − 1
d
u and tL = tL + 1

d
u; in both

forms one has λL = s̃ + t̃L. Even when κ < d + 1, one can associate a multiplier with the
channel (A.16) by completing the orthogonal basis Wk

J . In this case

φm =
{

s + tL m ∼ (L, j)

s otherwise.
(A.18)
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A.6. Conjugations on a single axis

We denote conjugation with a single unitary matrix U by �U so that �U(ρ) ≡ UρU †.
When U = UJj is an element of the OBU {ULk}, the channel �UJj

is diagonal in this basis
with multiplier φs ∼ φLk satisfying |φLk| = 1 and φJk = 1 for all k. However, the map
�

W
j

J
(ρ) = W

j

J ρW
−j

J is not diagonal unless the commutation condition (A.6) holds as in

question 21. When d is prime, UJj = W
j

J and we can say a bit more:

�UJj

(∣∣ψL
m

〉〈
ψL

m

∣∣) = �
W

j

J

(∣∣ψL
m

〉〈
ψL

m

∣∣) = ∣∣ψL
n

〉〈
ψL

n

∣∣, (A.19)

where n is a function of L and m. Thus, �
W

j

J
permutes axis states when d is prime.

It is useful to consider the special case of (A.5) in which the unitary conjugations involve
only a single axis J . The channels

MJ (ρ) =
∑

j

cj�UJj
(ρ) =

∑
j

cjUJjρU
†
Jj (A.20)

are diagonal with multiplier satisfying φJj = 1 and |φLk| � 1 for L �= J . If � is a channel
constant on axes, then a channel of the form � = � ◦ MJ still has a constant multiplier
λJ on the axis J but has multipliers |φLk| � λL on the other axes. A channel of the form
� = xMJ + (1 − x)� , with 0 � x � 1 has a constant multiplier x + (1 − x)λJ on the axis
J , but has multipliers |φLk| � x + (1 − x)λL on the other axes. Relaxing the requirement that
the coefficients aLj are constant on one axis J yields channels whose multipliers are constant
only on that axis.

A.7. EB condition on the L1 norm of a channel

We give a simple proof of the so-called ‘computable cross-norm’ condition for separability.
This says that a bipartite density matrix �� is separable if and only if

∑
j µj � 1 when µj are

the singular values after the canonical reshuffling of the elements so that �� is the CJ matrix
of a CP map. The conventions that Tr �� = 1 and �� satisfies the trace-preserving condition
Tr ��(ρ) = Tr ρ are not consistent unless the reshuffling is accompanied by multiplication
by d. Thus, theorem below gives an upper bound of d rather than 1.

Theorem 23. Let � be any EB channel. Then ‖�‖1 � d.

Proof. It was shown in [18] that a channel is EB if and only if it can be written in the form
�(ρ) = ∑

k Rk Tr ρEk , where each Rk is a density matrix and {Ek} forms a POVM, i.e., each
Ek � 0 and

∑
k Ek = I . Then, with respect to the Hilbert–Schmidt inner product, � can be

written as

� =
∑

k

|Rk〉〈Ek|, (A.21)

with the columns of Rk and Ek ‘stacked’ as in (A.8).
Any positive semi-definite matrix satisfies Tr E2

k � (Tr Ek)
2. Therefore, it follows from

the triangle inequality that

‖�‖1 �
∑

k

‖|Rk〉〈Ek|‖1 =
∑

k

(
Tr E2

k

)1/2(
Tr R2

k

)1/2

�
∑

k

Tr Ek = Tr I = d. (A.22)
�

An immediate corollary applies to diagonal channels with �
(∑

s asVs

) = ∑
s φsasVs .

Theorem 24. Let � be a channel which is diagonal in an OBU. If � is EB, then
∑

s |φs | � d.
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Appendix B. Some multiplicativity proofs

B.1. Convex combinations of channels

The following elementary lemma is needed in section 5.3.

Lemma 25. Let �j be any set of channels for which νp(�j ) � B for all j , and let � be a
convex combination of the �j . Then νp(�) � B. Moreover, if ‖�(ρ)‖p = B for some ρ,
then νp(�) = B.

As an illustration, we consider an application to channels with one symmetry axis.

Theorem 26. Let �(a∗, b∗) be a channel of the form (27) with b∗ > 0 and a∗ < 0.

(i) If νp[�(a∗, b∗)] = νp[�(0, b∗)], then νp[�(a, b∗)] = νp[�(0, b∗)] for all a ∈ (a∗, 0).
(ii) If (a) holds and (35) holds with � = �(a∗, b∗), then it also holds for � = �(a, b∗) with

a ∈ (a∗, 0).

Proof. The proof follows immediately from lemma 25 with B = νp[�(0, b∗)] in part (a) and
B = νp[�(0, b∗)]νp(�) in part (b). �

B.2. Conjecture 9 when p = 2 and p = ∞
Conjecture 9 posits that the maximal output p-norm of a channel constant on axes is achieved
on an axis state. We show this to be true in the special cases p = 2 and p = ∞.

Theorem 27. Let � be a channel constant on axes with |λL| � |λL∗ | for all L. Then

ν2(�) = ∥∥�(∣∣ψL∗
0

〉〈
ψL∗

0

∣∣)∥∥
2 (B.1)

ν∞(�) = ∥∥�(∣∣ψL∗
0

〉〈
ψL∗

0

∣∣)∥∥
∞. (B.2)

In the case p = 2, this uses the fact that the axis state saturates inequality (41) in
section 5.4. When the multipliers are all non-negative, we could prove the p = ∞ case using
theorem 16 from [26]. However, a more general proof using singular values works for all axis
channels and, indeed, it seems likely that one could generalize it to all p > 2. We present the
proof for channels with |λL∗ | � 1

d
; a similar argument works when |λL∗ | < 1

d−1 (1 − λL∗).
For a density matrix ρ, let {yi} be the singular values of �(ρ) with y0 = ‖�(ρ)‖∞. If

y0 > |λL∗ |, then

‖�(ρ)‖2
2 =

d−1∑
i=0

y2
i = y2

0 +
d−1∑
i=1

y2
i (B.3)

� y2
0 +

1

d − 1

(
d−1∑
i=1

yi

)2

= y2
0 +

1

d − 1
(1 − y0)

2 (B.4)

> λ2
L∗ +

1

d − 1
(1 − λL∗)2 = ∥∥�(∣∣ψL∗

0

〉〈
ψL∗

0

∣∣)∥∥2
2, (B.5)

which contradicts (B.1).
Therefore, ‖�(ρ)‖∞ �

∥∥�(∣∣ψL∗
0

〉〈
ψL∗

0

∣∣)∥∥
∞ for all ρ.
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B.3. Critical points

The following result emerged from our study of channels constant on axes. We present it here
in full generality.

Lemma 28. Let � be a positivity-preserving linear map on Md and {|ψn〉} an orthonormal
basis for Cd such that span{|ψn〉〈ψn|}n=1,2,...,d is an invariant subspace of both � and �̂. Let
γ (t) be a differentiable one-parameter family of pure states with γ (0) = |ψm〉〈ψm| for some
m. Then for all p � 1, the functions ‖�[γ (t)]‖p and S(�[γ (t)]) each have a critical point
at t = 0. Moreover, if �1 and �2 are positivity-preserving linear maps on Md1 and Md2 and
each satisfies the same hypotheses, then the result holds for any differentiable family γ12(t) of
pure states on Cd1d2 with γ12(0) = ∣∣ψ1

n ⊗ ψ2
m

〉〈
ψ1

n ⊗ ψ2
m

∣∣.
Proof. First, observe that since γ (t) is a pure for all t, Tr γ (t) = Tr [γ (t)]2 = 1 is constant,
which implies Tr γ ′(t) = 0. Then, writing γ (t) = |χ(t)〉〈χ(t)|, we see that

γ ′(t) = |χ(t)〉〈χ ′(t)| + |χ ′(t)〉〈χ(t)|.
Thus

0 = Tr γ ′(0) = 〈χ ′(0), ψm〉 + 〈ψm, χ ′(0)〉 = 2Re〈ψm, χ ′(0)〉. (B.6)

Now let f (t) = Tr(�[γ (t)])p and observe that

f ′(t) = p Tr(�[γ (t)])p−1�[γ ′(t)] = p Tr �̂[(�[γ (t)])p−1]γ ′(t). (B.7)

The invariance condition on � implies that �[γ (0)] = ∑
n µn|ψn〉〈ψn|, and the fact that it is

positivity preserving implies that µn � 0. Then it follows from the orthogonality of the ψn

that �[γ (0)]p−1 = ∑
n µ

p−1
n |ψn〉〈ψn|. Then using the invariance of �̂, we can find µ̃n such

that

f ′(0) = p Tr

(∑
n

µ̃n|ψn〉〈ψn|
)

γ ′(t)

= p Tr

(∑
n

µ̃n|ψn〉〈ψn|
)

(|ψm〉〈χ ′(0)| + |χ ′(0)〉〈ψm|)

= 2pµ̃m(〈ψm, χ ′(0)〉 + 〈χ ′(0), ψm〉) = 0 (B.8)

by (B.6). A similar argument holds for f (t) = S(�[γ (t)]). Note that � positivity
preserving is needed only to ensure that (�[γ (t)])p−1 and log(�[γ (t)])p−1 are well defined
and differentiable. In the case of a tensor product, it suffices to observe that the channel
�1 ⊗ �2 and the products

{∣∣ψ1
m ⊗ ψ2

n

〉})
satisfy the hypotheses of the lemma for d =

d1d2. �

Note that because Md has dimension d2 the hypothesis that the d-dimensional space
span{|ψn〉〈ψn|} is invariant is far from trivial. Special cases are given below.

(a) � is a channel constant on axes and
{∣∣ψJ

n

〉}
is one of the MUB.

(b) � is a Pauli diagonal channel, and {|ψn〉} are the common eigenvectors of a commuting
subset of d generalized Pauli matrices. When d is not prime, the subgroup need not be
cyclic. For example, for d = 4, the lemma applies to the simultaneous eigenvectors of
the set {I,X2, Z2, X2Z2}.

(c) Let � be a tensor product of unital qubit channels and |βn〉 = (I ⊗ σn)|β0〉 be the four
maximally entangled states (with |β0〉 = |00〉 + |11〉). Then

span{|βn〉〈βn|} = span{I ⊗ I, σx ⊗ σx, σy ⊗ σy, σz ⊗ σz},
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and this is an invariant subspace of �. So for a product of unital qubit channels, we have
a critical point at the maximally entangled states. Even when the inputs are not optimal,
this critical point can be a relative maximum; see the example in figure 6 of [15].

(d) This lemma does not apply directly to the Werner–Holevo channel [39] W(ρ) =
1

d−1 (I − ρT ) because W = Ŵ maps a basis to its complex conjugate, i.e.,

W(span{|ψn〉〈ψn|}) = span{|ψn〉〈ψn|}. (B.9)

For any pure input, (W(|ψ〉〈ψ |))p = 1
(d−1)p

W(|ψ〉〈ψ |), and Ŵ(|ψn〉〈ψn|) ∈
span{|ψn〉〈ψn|} since Ŵ = W . Therefore, we have all that is needed for the proof
of the statement

Ŵ(W(|ψn〉〈ψn|))p ∈ span{|ψn〉〈ψn|}, (B.10)

so that the conclusion still holds.
For a single use of �, this affirms that any pure state is a critical point of the p-norm, which
is clear since all pure state outputs have the same spectrum. For the product W ⊗W , this
shows that any maximally entangled state is a critical point of both the output p-norm and
entropy.

B.4. Proof of theorem 13

Using the notation of appendix A.1 with {Vs} the OBU, observe that any ρ12 can be written as
ρ12 = 1

d

∑
s Vs ⊗ As with As = Tr1

(
V

†
s ⊗ I

)
ρ12. Then ρ2 = 1

d
A0 and

(� ⊗ �)(ρ12) = 1

d

∑
s

φsVs ⊗ �(As). (B.11)

Then defining |φmax| = sups>0 |φs |, one finds

‖(� ⊗ �)(ρ12)‖2
2 = Tr(� ⊗ �)(ρ12)

†(� ⊗ �)(ρ12)

= 1

d

[
Tr|�(A0)|2 +

∑
s>0

|φs |2 Tr|�(As)|2
]

(B.12)

� 1

d

(
Tr|�(ρ2)|2(1 − |φmax|2) + |φmax|2

∑
s

Tr|�(As)|2
)

� 1

d

(
[ν2(�)]2(1 − |φmax|2) + |φmax|2d‖(I1 ⊗ �)(ρ12)‖2

2

)
� 1

d
([ν2(�)]2(1 − |φmax|2) + |φmax|2d[ν2(I ⊗ �)]2)

= 1

d
(1 + (d − 1)|φmax|2)[ν2(�)]2, (B.13)

where we used the fact [2] that ν2(I ⊗ �) = ν2(�). When dim H2 = 1, (41) follows.
Moreover, if the upper bound (41) is attained, then (B.13) implies that

‖(� ⊗ �)(ρ12)‖2
2 � [ν2(�)]2[ν2(�)]2, (B.14)

and this bound can always be attained by using a tensor product input.
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Appendix C. Separability of some CJ matrices

C.1. Extreme points with one symmetry axis

To prove theorem 7 in section 4.2, we need to establish that the points R and Y in figure 4
correspond to channels with separable CJ matrices.

For the point R = (− 1
d
, 1

d

)
, we will use a construction due to Horodecki [20] which

extends an argument in [19]. One can verify that the CJ matrix (29) can be written as

� = 1

d2

⎛⎝I +
∑
j �=k

|ej ⊗ ej 〉〈ek ⊗ ek|
⎞⎠

= 1

d2

1

md−1

∑
x2...xd

∣∣φx2,...,xd
⊗ φx2,...,xd

〉〈
φx2,...,xd

⊗ φx2,...,xd

∣∣, (C.1)

where m � 3 is an integer, x1 = 1 and each of the d − 1 remaining xj is chosen from among
the mth roots of unity e2π in/m, the sum runs over all possible choices of x2, . . . , xd , and∣∣φx2,...,xd

〉 = 1√
d

d∑
j=1

xj |ej 〉.

The point Y = (
1
2 , −1

2(d−1)

)
corresponds to the channel �YEB

J , for which the CJ matrix (29) can
be written as

� = 1

2d(d − 1)

⎛⎝∑
j �=k

|ej ⊗ ek〉〈ej ⊗ ek| + (d − 1)

×
∑

k

|ek ⊗ ek〉〈ek ⊗ ek| −
∑
j �=k

|ej ⊗ ej 〉〈ek ⊗ ek|
⎞⎠

= 1

2d(d − 1)

∑
j<k

γjk, (C.2)

where γjk is given by

|ej ⊗ ek〉〈ej ⊗ ek| + |ek ⊗ ej 〉〈ek ⊗ ej | + (|ej ⊗ ej 〉 − |ek ⊗ ek〉)(〈ej ⊗ ej | − 〈ek ⊗ ek|).
Each γjk corresponds to a qubit density matrix of the form⎛⎜⎜⎝

1 0 0 −1
0 1 0 0
0 0 1 0

−1 0 0 1

⎞⎟⎟⎠ ,

which is separable because it satisfies the PPT condition. Thus, (C.2) is a convex combination
of separable matrices.

C.2. State representatives for d prime

To further characterize the EB maps, we need more information about the CJ matrix. We
first consider only the case of prime d, for which the generators WJ are generalized Pauli
matrices. There is no loss of generality in assuming that WJ = XZJ for J = 1, 2, . . . , d and
that Wd+1 = Z. For J �= d + 1:

Wm
J (|ej 〉〈ek|)W−m

J = ωmJ(j−k)|ej+m〉〈ek+m|,
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so that

�X
J (|ej 〉〈ek|) = 1

d − 1

∑
m�=0

ωmJ(j−k)|ej+m〉〈ek+m|. (C.3)

Note that this implies that for J �= d+1, the CJ matrix ��X
J

has the coefficient of |ej⊗ej 〉〈ek⊗ek|
equal to zero for all j, k, which means that the maximally entangled state |β〉 is in its kernel.
The same is true for the CJ matrix of the CP map �̂d+1 = ∑

J �=d+1 aJ �X
J with aJ > 0. When

d = 3, we can write its CJ matrix explicitly as

�̂d+1 = 1

6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 α 0 0 0 z z 0 0
0 0 α z 0 0 0 z 0

0 0 z α 0 0 0 z 0
0 0 0 0 0 0 0 0 0
0 z 0 0 0 α z 0 0

0 z 0 0 0 z α 0 0
0 0 z z 0 0 0 α 0
0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C.4)

where z = a1ω + a2ω
2 + a3 and α = a1 + a2 + a3 which is 1 when �̂d+1 is TP.

To obtain the general CJ matrix, observe that we can use (17) to write any channel constant
on axes as

� = a00I + ad+1�
X
d+1 +

d∑
J=1

aJ �X
J

= 1

d
[(d − 1)s + 1 − td+1]I + td+1�

QC
d+1 + �̂d+1, (C.5)

with a00, aJ , s, tJ related as following (10). Then

�� = 1

d
[(d − 1)s + 1 − td+1]|β〉〈β| +

td+1

d

∑
j

|ej ⊗ ej 〉〈ej ⊗ ej | + �̂d+1. (C.6)

We now give the nonzero elements of �� with the conventions that indices with different
letters are always unequal. The first two come from the first two terms in (C.6) and the next
two from �̂d+1 and (C.3).

Term: Coefficient:

|ej ⊗ ej 〉〈ej ⊗ ej | 1

d2
[(d − 1)s − (d − 1)td+1] = 1

d2
[1 + (d − 1)λd+1]

|ej ⊗ ej 〉〈ek ⊗ ek| 1

d2
[1 + ds − λd+1] = 1

d2

[
d∑

J=1

λJ

]

|ej ⊗ ek〉〈ej ⊗ ek| 1

d(d − 1)
(1 − a00 − ad+1) = 1

d2
(1 − λd+1)

|ej ⊗ ej+m〉〈ek ⊗ ek+m| 1

d2

∑
J �=d+1

ωmJ(j−k)tJ = 1

d2

∑
J �=d+1

ωmJ(j−k)λJ .
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We write the CJ matrix explicitly in the case d = 3:

1

9

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + 2λ4 0 0 0 u 0 0 0 u

0 1 − λ4 0 0 0 z z 0 0
0 0 1 − λ4 z 0 0 0 z 0

0 0 z 1 − λ4 0 0 0 z 0
u 0 0 0 1 + 2λ4 0 0 0 u

0 z 0 0 0 1 − λ4 z 0 0

0 z 0 0 0 z 1 − λ4 0 0
0 0 z z 0 0 0 1 − λ4 0
u 0 0 0 u 0 0 0 1 + 2λ4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(C.7)

where u = λ1 + λ2 + λ3 and z = λ1ω + λ2ω
2 + λ3.

C.3. Implications and proofs for d = 3

Proof of theorem 6. Applying the partial transpose to (C.7) gives a matrix which can be
permuted to give three similar 3 × 3 blocks so that the PPT condition is equivalent to

1

9

⎛⎝1 + 2λ1 z z

z 1 − λ1 u

z u 1 − λ1

⎞⎠ � 0. (C.8)

Conjugating this with the unitary matrix

1√
2

⎛⎝
√

2 0 0
0 1 1
0 1 −1

⎞⎠
gives the equivalent condition

1

9

⎛⎝1 + 2λ1

√
2z 0√

2z 1 − λ1 + u 0
0 0 1 − λ1 − u

⎞⎠ � 0. (C.9)

This gives a pair of necessary and sufficient conditions for PPT

1 − λ1 − u � 0 and (1 + 2λ1)(1 − λ1) � 2|z|2.
The first is equivalent to

∑
J λJ � 1 which was shown in theorem 5 to be necessary for all d;

the second is (23). �

On the base tetrahedron,
∑

J λJ = − 1
2 and the second condition reduces to

∑
J λ2

J � 1
4 ;

this is the equation of the inscribed sphere which just touches the faces of the base tetrahedron,
as shown in figure 2.

C.3.1. Extreme points. Next consider a channel of the form �̂K = ∑
J �=K aJ �X

J which is
a convex combination of d of the �X

J . When d = 3 and K = d + 1, the CJ matrix of �̂K is
given by (C.4). It is easy to see that the PPT condition for separability can never be satisfied
unless z = 0. But this will happen if and only if all aJ = 1

d
. This corresponds to a channel

�XEB
J in the centre of one of the faces of the ‘base’ tetrahedron shown in figure 2. Therefore,

�XEB
J is an extreme point of the convex hull of EB maps for d = 3.



Pauli diagonal channels constant on axes 8203

The point �YEB
J lies on the line segment t�XEB

J + (1 − t)�X
J , which is the segment BE in

figure 4. It follows from theorem 7 that these channels are EB if and only if 1
2 � t � 1, i.e.,

that �XEB
J and �YEB

J are the extreme points of the EB channels restricted to this line segment.
In the case d = 3, �YEB

J = [
1
4 ,− 1

4 ,− 1
4 ,− 1

4

]
lies on the boundary of the sphere

∑
J λ2

J � 1
4

which encloses the set of PPT maps in the base tetrahedron. Since this set is strictly convex,
�YEB

J must be an extreme point of the subset of EB maps when d = 3.
Note that there are channels in the base tetrahedron which satisfy the CCN condition∑

J |λJ | � 1 but are not PPT. For example, 1
6�X

1 + 2
6�X

2 + 3
6�X

3 gives a channel with multiplier[− 1
4 , 0, + 1

4 ,− 1
2

]
. This channel has |λJ |2 = 3

8 > 1
4 and lies on a face of the base tetrahedron

with unequal aJ .

C.4. Some observations for d > 3:

The form of the CJ matrices in appendix C.2 generalizes to prime d > 3, in particular the pattern
of non-zero elements in the matrix. Indeed, the only elements with non-zero coefficients must
have the form |ej 〉〈ek| ⊗ |ej+m〉〈ek+m|. When j = k or m = 0, the coefficients were given
explicitly after (C.6).

Applying the PPT condition to a channel of the form �̂K = ∑
J �=K aJ �X

J with K = d + 1

will yield d − 1 equations of the form
∑d

J=1 ωnJ aJ = 0, with each of the d roots of unity
occurring exactly once. We note that setting all aJ = 1

d
yields a solution to these equations.

Moreover, combining the d − 1 PPT equations with the normalization condition
∑

J aJ = 1,
gives d equations for the d numbers aJ . The coefficient matrix for the aJ can be written in the
form xjk = ωjk . This is a unitary matrix which implies that aJ = 1

d
∀J is the only solution.

Thus, as for d = 3, the only EB maps on the ‘faces’ of the base are the �XEB
J , which are thus

true extreme points of the EB subset of channels constant on axes.
We remark that the positivity of the submatrix of ��⎛⎜⎜⎜⎝

1 + (d − 1)λK u u . . . u

u 1 + (d − 1)λK u . . . u

...
. . .

...

u . . . u 1 + (d − 1)λK

⎞⎟⎟⎟⎠
yields inequalities (12). In fact, one eigenvalue is

(d − 1)u + 1 + (d − 1)λK = 1 + (d − 1)
∑

J

λJ ,

and the requirement that this is �0 gives (13b). Considering a 2 × 2 submatrix gives
(1 + (d − 1)λK)2 � u2 which implies (13a).
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